在数学上,证明是在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。比起证据,数学证明一般依靠演绎推理,而不是依靠自然归纳和经验性的理据。这样推导出来的命题也叫做该系统中的定理。数学证明建立在逻辑之上,但通常会包含自然语言,因此可能会产生一些模棱两可的部分。实际上,若证明的大部分内容用文字形式的数学写成,可以视为非形式逻辑的应用。在证明论的范畴内,只考虑用纯形式化的语言写出的证明。这个区别导致了对过往到现在的数学实践、数学上的拟经验论和民间数学(或称大众数学)的大部分检验。数学哲学就关注语言和逻辑在数学证明中的角色,和作为语言的数学。