经验正交函数分析方法(Empirical Orthogonal Function,缩写为EOF),也称特征向量分析(Eigenvector Analysis),或者主成分分析(Principal Component Analysis,缩写PCA),是一种分析矩阵数据中的结构特征,提取主要数据特征量的一种方法。Lorenz在1950年代首次将其引入气象和气候研究,在地学及水声学等其他学科中得到了非常广泛的应用。地学数据分析中通常特征向量对应的是空间样本,所以也称空间特征向量或者空间模态;主成分对应的是时间变化,也称时间系数。因此地学中也将EOF分析称为时空分解。